Reliability of Layered Neural Oscillator Networks

نویسندگان

  • Kevin K. Lin
  • Eric Shea-Brown
  • Lai-Sang Young
چکیده

We study the reliability of large networks of coupled neural oscillators in response to fluctuating stimuli. Reliability means that a stimulus elicits essentially identical responses upon repeated presentations. We view the problem on two scales: neuronal reliability, which concerns the repeatability of spike times of individual neurons embedded within a network, and pooled-response reliability, which addresses the repeatability of the total synaptic output from the network. We find that individual embedded neurons can be reliable or unreliable depending on network conditions, whereas pooled responses of sufficiently large networks are mostly reliable. We study also the effects of noise, and find that some types affect reliability more seriously than others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

Binding of Audio Elements in the Sound Source Segregation Problem via a Two-layered Bio-inspired Neural Network

We use a two-layered bio-inspired neural network to segregate sound sources, i.e. double-vowels or intruding noises in speech. The architecture of the network consists of spiking neurons. The spiking neurons in both layers are modelized by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. Our auditory image is based...

متن کامل

Object selection by an oscillatory neural network.

We describe a new solution to the problem of consecutive selection of objects in a visual scene by an oscillatory neural network with the global interaction realised through a central executive element (central oscillator). The frequency coding is used to represent greyscale images in the network. The functioning of the network is based on three main principles: (1) the synchronisation of oscil...

متن کامل

Interpretation of automated perimetry for glaucoma by neural network.

PURPOSE Neural networks were trained to interpret the visual fields from an automated perimeter. The authors evaluated the reliability of the trained neural networks to discriminate between normal eyes and eyes with glaucoma. METHODS Inclusion criteria for glaucomatous and normal eyes were the intraocular pressure and the appearance of the optic nerve; previous visual fields were not used. Th...

متن کامل

Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance

This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008